course in the slide rule and logarithms.
Read Online
Share

course in the slide rule and logarithms. by Elijah Justin Hills

  • 40 Want to read
  • ·
  • 5 Currently reading

Published by Ginn in Boston .
Written in English

Subjects:

  • Slide-rule.

Book details:

Classifications
LC ClassificationsQA73 .H58 1950
The Physical Object
Paginationiv, 107 p.
Number of Pages107
ID Numbers
Open LibraryOL6071635M
LC Control Number50010821
OCLC/WorldCa1618280

Download course in the slide rule and logarithms.

PDF EPUB FB2 MOBI RTF

Additional Physical Format: Online version: Hills, Elijah Justin. Course in the slide rule and logarithms. Boston, New York [etc.] Ginn and Company []. COVID Resources. Reliable information about the coronavirus (COVID) is available from the World Health Organization (current situation, international travel).Numerous and frequently-updated resource results are available from this ’s WebJunction has pulled together information and resources to assist library staff as they consider how to handle coronavirus. An Easy Introduction to the Slide Rule. Hardcover – June 1, by And of course he does. But this text is intended neither as a crisp set of instructions on how to use the rule, nor a rigorous discussion of the mathematical basis for its construction. only multiplication, division, powers, roots, and (common) logarithms are included Reviews: 8. Slide Rules and Logarithm Tables A. Learn to use a slide rule. Try this (1). a) Obtain or make a slide rule. Do one of the following. i) Use the online, or do a web search and find another virtual slide rule OR ii) Print out , and cut and assemble it OR iii) Make a cardboard slide rule following the instructions atFile Size: KB.

Logarithms. Slide rules are based on the concept of logarithms. Although a knowledge of logarithms it is not necessary to be able to use a slide rule, it does help you to understand what you are doing. If you multiply a number raised to two different powers, the result is equal to the same number raised to the sum of the powers. Logarithms book for beginners and high school students on solving logarithms. Explaining Logarithms by Dan Umbarger. ISBN (color) ISBN (b & w). A logarithm is an exponent. log 10 10, = 4. "The logarithm of 10, with base 10 is 4." 4 is the exponent to which 10 must be raised to prod "10 4 = 10," is called the exponential form. "log 10 10, = 4" is called the logarithmic form. Here is the definition: log bx = n means bn = x. That base with that exponent produces x. Details about A Course in the Slide Rule & Logarithms United States Armed Forces Institute A Course in the Slide Rule & Logarithms United States Armed Forces Institute Item Information. Condition: Used. Price: US $Seller Rating: % positive.

In his second book, Joint Slide Rules: Sectors, 2-foot 2-fold and similar slide rules, expert Peter M. Hopp examines the joint rule, completing an important but neglected part of slide rule history. The book is a comprehensive account of joint rules and contains detailed information on over two hundred joint slide rule makers from around the world. This is the fundamental identity underlying all slide rule calculations, and it is worth stating prominently: It's convenient to think of the logarithm as the common (base 10) logarithm, and the length of the slide rule as one unit, but you can also think of log meaning the natural logarithm, and the length of the slide rule being log(10) units. So of course, \(2^{\log n} = n\) when the base of the log is 2. (this is simply logarithm property (1)). A slide rule measures the length of the logarithm for the numbers, lets you slide bars representing these lengths to add up the total length, and finally converts this total length to the correct numeric answer by taking the inverse of. If you're interested in slide rules but not very familiar with their use, you will find this book helpful and informative. It starts slowly, explaining what a logarithm (log) is and how slide rules use logs to enable multiplication and division. From there, it goes on to explain the use of 5/5(3).